Year
2013
Season
Summer
Paper Type
Master's Thesis
College
College of Arts and Sciences
Degree Name
Master of Science in Biology (MS)
Department
Biology
NACO controlled Corporate Body
University of North Florida. Department of Biology
First Advisor
Dr. Cliff Ross
Second Advisor
Dr. Judith D. Ochrietor
Third Advisor
Dr. Valerie J. Paul
Department Chair
Dr. Daniel C. Moon
College Dean
Dr. Barbara A. Hetrick
Abstract
Scleractinian coral populations are declining worldwide in response to numerous stressors operating on both global and regional scales. Rising sea surface temperatures associated with global climate change and the increasing frequency of coral-macroalgae competitive interactions are two of the gravest ecological drivers facing coral reef ecosystems. However, little is known about how these stressors interact to impact corals, their health, and potential modes of population recovery. These threats also highlight the need to develop reliable techniques that detect stress in multiple life-history stages of hermatypic corals prior to the degradation of coral reef habitats. To address these concerns we evaluated the effects of elevated sea surface temperatures (+3.5°C), Dictyota menstrualis competition, and their combined impacts on three life-history stages of the reef-building coral Porites astreoides. Elevated temperature induced sub-lethal stress yet had varied responses that were contingent on the life-history stage being examined. Hyperthermal stress did not consistently effect the transcriptional expression of heat shock proteins (Hsp) 16 or 60, but was readily detected utilizing biomarkers of the oxidative stress pathway. The presence of D. menstrualis significantly reduced coral survival and recruitment beyond simple space occupation in every coral life-history stage examined.While macroalgal exposure and elevated temperature had distinct effects on coral survival and physiological condition, the combination of both stressors induced a synergistic impact on biomarkers of oxidative stress in coral larvae. The results highlight the potential of biomarkers of oxidative stress for detecting hyperthermal stress in scleractinian corals. They also support the accepted notion that benthic macroalgae compete with reef-building corals via direct contact for space on coral reefs and that elevated temperatures can reduce the health of the coral holobiont. In addition, the results indicate that larvae from P. astreoides are more susceptible to the impacts of hyperthermal stress compared to established corals and that multiple perturbations can interact to exacerbate coral health.
Suggested Citation
Olsen, Kevin C., "The Effects of Thermal Stress and Algal Competition on the Early Life-History Stages of Porites astreoides and the Development of Stress-Detecting Biomarkers for Use in Scleractinan Corals" (2013). UNF Graduate Theses and Dissertations. 460.
https://digitalcommons.unf.edu/etd/460