Year
2015
Season
Summer
Paper Type
Master's Thesis
College
College of Computing, Engineering & Construction
Degree Name
Master of Science in Civil Engineering (MSCE)
Department
Engineering
NACO controlled Corporate Body
University of North Florida. School of Engineering
First Advisor
Dr. Christopher J. Brown
Second Advisor
Dr. Donald T. Resio
Third Advisor
Dr. Peter Bacopoulos
Department Chair
Dr. Murat Tiryakioglu
College Dean
Dr. Mark A. Tumeo
Abstract
As hydrological computer modeling software continues to increase in complexity, the need for further understanding of the value of different model input datasets becomes apparent. Frequently used precipitation model input include rain gauge data and next-generation radar–based (NEXRAD) rainfall data. Rain gauge data are usually interpolated across a model domain using various methods including the Thiessen Polygon methodology, which may be data-sparse in some areas and overly data-dense in others. However, rain gauge data are generally very easy to use in hydrologic model development, often requiring little to no data processing. NEXRAD data have the potential to improve hydrologic runoff estimates due to the increased spatial resolution of the data: but has its own issues regarding accuracy, false precipitation indications, and difficulties due to data processing. Previous studies have investigated the value of NEXRAD input versus traditional rain gauge data inputs for hydrologic studies; however, results are inconclusive as to which precipitation source provides more accurate results. Limited work has been done to compare the value of these datasets at multiple spatial scales, especially in Florida, a study area dominated by low topographic drive and sub-tropical weather. In addition, little to no research has been done regarding the value of NEXRAD versus rain gauge data inputs at different rainfall return frequencies. The proposed research will utilize a hydrological rain-runoff model (HEC-HMS) of the Upper St. Johns River Basin, Florida to compare the performance of the two precipitation data input types at various watershed spatial scales and rainfall return frequencies. Statistical analysis of the hydrological model “goodness-of-fit” results will be utilized to assess the watershed scaling and rainfall frequency requirements to xii which NEXRAD data provide little to no advantage over standard rain gauges using the Thiessen Polygon method for estimating rainfall totals across a model domain.
Suggested Citation
Tancreto, Amanda E., "Comparison of Hydrologic Model Performance Statistics Using Thiessen Polygon Rain Gauge and NEXRAD Precipitation Input Methods at Different Watershed Spatial Scales and Rainfall Return Frequencies" (2015). UNF Graduate Theses and Dissertations. 584.
https://digitalcommons.unf.edu/etd/584