Year

2020

Season

Summer

Paper Type

Master's Thesis

College

College of Arts and Sciences

Degree Name

Master of Science in Mathematical Sciences (MS)

Department

Mathematics & Statistics

NACO controlled Corporate Body

University of North Florida. Department of Mathematics and Statistics

First Advisor

Daniel Dreibelbis

Second Advisor

Raimundo Araujo Dos Santos

Third Advisor

Denis Bell

Department Chair

Richard Patterson

Abstract

We study a problem at the intersection of harmonic morphisms and real analytic Milnor fibrations. Baird and Ou establish that a harmonic morphism from G: \mathbb{R}^m \setminus V_G \rightarrow \mathbb{R}^n\setminus \{0\} defined by homogeneous polynomials of order p retracts to a harmonic morphism \psi|: S^{m-1} \setminus K_\epsilon \rightarrow S^{n-1} that induces a Milnor fibration over the sphere. In seeking to relax the homogeneity assumption on the map G, we determine that the only harmonic morphism $\varphi: \mathbb{R}^m \setminus V_G \rightarrow S^{m-1}\K_\epsilon$ that preserves \arg G is radial projection. Due to this limitation, we confirm Baird and Ou's result, yet establish further that in fact only homogeneous polynomial harmonic morphisms retract to harmonic-morphism Milnor maps over the sphere.

Share

COinS