The heat equation on the finite poincarÉ upper half-plane
Document Type
Article
Publication Date
10-1-2021
Abstract
A differential-difference operator is used to model the heat equation on a finite graph analogue of Poincaré’s upper half-plane. Finite analogues of the classical theta functions are shown to be solutions to the heat equation in this setting.
Publication Title
Proceedings of the American Mathematical Society
Volume
149
Issue
10
First Page
4171
Last Page
4180
Digital Object Identifier (DOI)
10.1090/PROC/15610
ISSN
00029939
E-ISSN
10886826
Citation Information
DeDeo, & Velasquez, E. (2021). The heat equation on the finite Poincaré upper half-plane. Proceedings of the American Mathematical Society, 149(10), 4171–4180. https://doi.org/10.1090/proc/15610