Influence of fine recycled concrete powder on the compressive strength of self-compacting concrete (Scc) using artificial neural network
Document Type
Article
Publication Date
3-2-2021
Abstract
This paper aims to investigate the effect of fine recycled concrete powder (FRCP) on the strength of self-compacting concrete (SCC). For this purpose, a numerical artificial neural network (ANN) model was developed for strength prediction of SCC incorporating FRCP. At first, 240 experimental data sets were selected from the literature to develop the model. Approximately 60% of the database was used for training, 20% for testing, and the remaining 20% for the validation step. Model inputs included binder content, water/binder ratio, recycled concrete aggregates’ (RCA) content, percentage of supplementary cementitious materials (fly ash), amount of FRCP, and curing time. The model provided reliable results with mean square error (MSE) and regression values of 0.01 and 0.97, respectively. Additionally, to further validate the model, four experimental recycled self-compacting concrete (RSCC) samples were tested experimentally, and their properties were used as unseen data to the model. The results showed that the developed model can predict the compressive strength of RSCC with high accuracy.
Publication Title
Sustainability (Switzerland)
Volume
13
Issue
6
Digital Object Identifier (DOI)
10.3390/su13063111
E-ISSN
20711050
Citation Information
Boudali, S., Abdulsalam, B., Rafiean, A. H., Poncet, S., Soliman, A., & ElSafty, A. (2021). Influence of Fine Recycled Concrete Powder on the Compressive Strength of Self-Compacting Concrete (SCC) Using Artificial Neural Network. Sustainability, 13(6), 3111. MDPI AG. Retrieved from http://dx.doi.org/10.3390/su13063111