Magnetic impurity bands in Gax-1Mnx S: Towards understanding the anomalous spin-glass transition

Document Type

Article

Publication Date

10-29-2018

Abstract

We report on the magnetic and electronic properties of single-crystalline Ga0.91Mn0.09S, which is a quasi-two-dimensional diluted magnetic semiconductor (DMS). Through an analysis of magnetization data, we show the existence of an anomalously high spin-glass transition temperature at 11.2 K. Using density functional theory (DFT), we characterize the properties contributing to the spin-glass transition through an examination of the electronic and magnetic properties for Ga1-xMnxS with x varying from 0.00 to 0.18 by randomly substituting Mn atoms into the gallium (Ga) lattice sites. We show that the presence of magnetic atoms produces impurity bands in the electronic structure, where an analysis of the density of states shows an increase in magnetic impurity bands at the Fermi level that lowers the semiconducting gap and is consistent with diluted magnetic semiconductors. Furthermore, this indicates that the spin-glass transition in Ga0.91Mn0.09S is similar to other DMS materials, where the primary mechanism is likely through magnetic exchange. However, the increased electron density in the system with Mn doping could explain the anomalously higher spin-glass transition temperature in Ga0.91Mn0.09S. In comparison with the substantially lower transition temperatures in related II-VI based systems (i.e., Zn1-xMnxTe), the high transition temperature is associated with more metallic spin-glass systems that interact through RKKY exchange, which leads to the conclusion that there may be a combination of interactions occurring in these systems. Further measurements on the other substitution percentages will hopefully clarify these interactions.

Publication Title

Physical Review B

Volume

98

Issue

15

Digital Object Identifier (DOI)

10.1103/PhysRevB.98.155206

ISSN

24699950

E-ISSN

24699969

Share

COinS