Interpretation of structural analytical models from the coordination view in building information models
Document Type
Article
Publication Date
6-1-2018
Abstract
Structural design/analysis is one of the most needed uses of Building Information Modeling (BIM). Transforming a building information model to an engineering analytical model is tedious and time-consuming. In addition to geometry transformation, extensive modifications and interpretations are required to make the complex transformed model ready for analysis. Despite such a recognized need, Industry Foundation Classes (IFC) has not been developed sufficiently in engineering analysis uses of BIM as much as it is in some other uses such as design coordination and facility management. As a contribution to addressing this void, development of a new mechanism is discussed in this paper for transformation of IFC building information models in the Coordination View to their equivalent structural models in IFC Structural Analysis View. Considering IFC as the input and output file formats of the mechanism significantly increases the level of interoperability in the proposed model interpretation process. This mechanism is designed to automate the required transformation, modification, and additions operations during such information exchanges. To illustrate feasibility of its implementation, a tool is introduced to automate the developed Interpreted Information Exchange (IIE) mechanism, and its application through a case study serves as validation of the mechanism. The designed IIE mechanism can be extended to automate additional structural modeling tasks. The IIE concept is also applicable to other uses of BIM, especially engineering analysis uses, in order to automate creation of analytical modeling from building information models.
Publication Title
Automation in Construction
Volume
90
First Page
117
Last Page
133
Digital Object Identifier (DOI)
10.1016/j.autcon.2018.02.025
ISSN
09265805
Citation Information
Ramaji, & Memari, A. M. (2018). Interpretation of structural analytical models from the coordination view in building information models. Automation in Construction, 90, 117–133. https://doi.org/10.1016/j.autcon.2018.02.025