From Returns to Tweets and Back: An Investigation of the Stocks in the Dow Jones Industrial Average

Document Type

Article

Publication Date

1-2-2017

Abstract

A sizeable percentage of investors are using social media to obtain information about companies (Cogent Research [2008]). As a consequence, social media content about firms may have an impact on stock prices (Hachman [2011]). Various studies utilize social media content to forecast stock market-related factors such as returns, volatility, or trading volume. The objective of this article is to investigate whether a bidirectional intraday relationship between stock returns and volatility and tweets exists. The study analyzed 150,180 minute-by-minute stock price and tweet data for the 30 stocks in the Dow Jones Industrial Average over a random 13-day interval from June 2 to June 18, 2014 using a BEKK-MVGARCH methodology. Findings indicate that 87% of stock returns are influenced by lagged innovations of the tweets data, but there is little evidence to support that the direction is reciprocal, with only 7% of tweets being influenced by lagged innovations of the stock returns. Results further show that the lagged innovations from 40 percent of stock returns affect the current conditional volatility of the tweets, while 73 percent of tweets affect the current conditional volatility of stock returns. Moreover, there is strong evidence to suggest that the volatility originating from the returns to the tweets persists for 33 percent of stocks; the volatility originating from the tweets to the returns persists for 73 percent of stocks. Last, 53 percent of stocks exhibit both immediate and persistent impacts from returns to tweets, while 90 percent of stocks exhibit both immediate and persistent impacts from tweets to returns. These results may help traders achieve superior returns by buying and selling individual stocks or options. Also, asset and mutual fund managers may benefit by developing a social media strategy.

Publication Title

Journal of Behavioral Finance

Volume

18

Issue

1

First Page

54

Last Page

64

Digital Object Identifier (DOI)

10.1080/15427560.2017.1276066

ISSN

15427560

E-ISSN

15427579

Share

COinS