Microwave dynamics of high aspect ratio superconducting nanowires studied using self-resonance
Document Type
Article
Publication Date
6-21-2016
Abstract
We study the microwave impedance of extremely high aspect ratio (length/width ≈ 5000) superconducting niobium nitride nanowires. The nanowires are fabricated in a compact meander geometry that is in series with the center conductor of a 50 Ω coplanar waveguide transmission line. The transmission coefficient of the sample is measured up to 20 GHz. At high frequency, a peak in the transmission coefficient is seen. Numerical simulations show that this is a half-wave resonance along the length of the nanowire, where the nanowire acts as a high impedance, slow wave transmission line. This resonance sets the upper frequency limit for these nanowires as inductive elements. Fitting simulations to the measured resonance enables a precise determination of the nanowire's complex sheet impedance at the resonance frequency. The real part is a measure of dissipation, while the imaginary part is dominated by kinetic inductance. We characterize the dependence of the sheet resistance and sheet inductance on both temperature and current and compare the results to recent theoretical predictions for disordered superconductors. These results can aid in the understanding of high frequency devices based on superconducting nanowires. They may also lead to the development of novel superconducting devices such as ultra-compact resonators and slow-wave structures.
Publication Title
Journal of Applied Physics
Volume
119
Issue
23
Digital Object Identifier (DOI)
10.1063/1.4954068
ISSN
00218979
E-ISSN
10897550
Citation Information
Santavicca, Adams, J. K., Grant, L. E., McCaughan, A. N., & Berggren, K. K. (2016). Microwave dynamics of high aspect ratio superconducting nanowires studied using self-resonance. Journal of Applied Physics, 119(23), 234302–. https://doi.org/10.1063/1.4954068