State estimation of tidal hydrodynamics using ensemble Kalman filter
Document Type
Article
Publication Date
1-1-2014
Abstract
This paper presents a coupling of an ensemble Kalman filter (EnKF) with a discontinuous Galerkin-based, two-dimensional circulation model (DG ADCIRC-2DDI) to improve the state estimation of tidal hydrodynamics including water surface elevations and depth-integrated velocities. The methodology in this paper using EnKF perturbs the modeled hydrodynamics and bottom friction parameterization in the model while assimilating data with inherent error, and demonstrates a capability to apply EnKF within DG ADCIRC-2DDI for data assimilation. Parallel code development presents a unique aspect of the approach taken and is briefly described in the paper, followed by an application to a real estuarine system, the lower St. Johns River in north Florida, for the state estimation of tidal hydrodynamics. To test the value of gauge observations for improving state estimation, a tide modeling case study is performed for the lower St. Johns River successively using one of the four available tide gauging stations in model-data comparison. The results are improved simulations of water surface elevations and depth-integrated velocities using DG ADCIRC-2DDI with EnKF, both locally where data are available and non-locally where data are not available. The methodology, in general, is extensible to other modeling and data applications, for example, the use of remote sensing data, and specifically, can be readily applied as is to study other tidal systems. © 2013 Elsevier Ltd.
Publication Title
Advances in Water Resources
Volume
63
First Page
45
Last Page
56
Digital Object Identifier (DOI)
10.1016/j.advwatres.2013.11.002
ISSN
03091708
Citation Information
Tamura, Bacopoulos, P., Wang, D., Hagen, S. C., & Kubatko, E. J. (2014). State estimation of tidal hydrodynamics using ensemble Kalman filter. Advances in Water Resources, 63, 45–56. https://doi.org/10.1016/j.advwatres.2013.11.002