Mitochondrial DNA maintenance in Drosophila melanogaster
Document Type
Article
Publication Date
11-30-2022
Subject Area
Animals; Humans; DNA, Mitochondrial (genetics); Drosophila melanogaster (genetics, metabolism); Mitochondria (genetics, metabolism); DNA Polymerase gamma (genetics, metabolism); Drosophila Proteins (metabolism); DNA Replication (genetics); Mitochondrial Proteins (genetics); Mammals (metabolism)
Abstract
All 37 mitochondrial DNA (mtDNA)-encoded genes involved with oxidative phosphorylation and intramitochondrial protein synthesis, and several nuclear-encoded genes involved with mtDNA replication, transcription, repair and recombination are conserved between the fruit fly Drosophila melanogaster and mammals. This, in addition to its easy genetic tractability, has made Drosophila a useful model for our understanding of animal mtDNA maintenance and human mtDNA diseases. However, there are key differences between the Drosophila and mammalian systems that feature the diversity of mtDNA maintenance processes inside animal cells. Here, we review what is known about mtDNA maintenance in Drosophila, highlighting areas for which more research is warranted and providing a perspective preliminary in silico and in vivo analyses of the tissue specificity of mtDNA maintenance processes in this model organism. Our results suggest new roles (or the lack thereof) for well-known maintenance proteins, such as the helicase Twinkle and the accessory subunit of DNA polymerase γ, and for other Drosophila gene products that may even aid in shedding light on mtDNA maintenance in other animals. We hope to provide the reader some interesting paths that can be taken to help our community show how Drosophila may impact future mtDNA maintenance research.
Publication Title
Bioscience reports
Volume
42
Issue
11
Digital Object Identifier (DOI)
10.1042/BSR20211693
PubMed ID
36254835
E-ISSN
1573-4935
Language
eng
Citation Information
Rodrigues, Ana P.; Novaes, Audrey C.; Ciesielski, Grzegorz L.; and Oliveira, Marcos T., "Mitochondrial DNA maintenance in Drosophila melanogaster" (2022). UNF Faculty Research and Scholarship. 3276.
https://digitalcommons.unf.edu/unf_faculty_publications/3276